Complex numbers: A complex no is one having real and imaginary parts e.g. a + ib where $a, b \in R$ and $i \in Imaginary i$ defined by the statement $i^2 = -1$.

This is obtained by the solution of the quadratic equation $x^2 + 1 = 0$

Recall: $ax^2 + bx + c = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

For real roots, $b^2 - 4ac > 0$

For equal roots; $b^2 - 4ac = 0$

For complex roots; $b^2 - 4ac < 0$

$$x^2 + 1 = x^2 + 0x + 1 = 0$$

$$x = \frac{-0 \pm \sqrt{0^2 - 4}}{2} = \frac{\pm \sqrt{-4}}{2}$$

$$=\frac{\pm\sqrt{4i^2}}{2}$$

$$x = \frac{\pm 2i}{2} = x = - \pm i$$

Ex: (1)
$$x^2 - 4x + 13 = 0$$

$$x^2 + 2x + 5 = 0$$

$$x^2 + x + 1 = 0$$

$$x^2 \pm 4 = 0$$

$$x^2 \pm 9 = 0$$

$$x^2 \pm 25 = 0$$

Operations on complex numbers

Addition of 2 complex numbers

$$(2+4i) + 3i = 2+7i$$

$$(3+10l i) + (4-24i) = 7+77i$$

$$(1+i) + (-3-4i) = -2-3i$$

$$Z_1 = a_1 + ib$$

$$Z_2 = a_2 + ib_2$$

$$Z_1 + Z_2 = (a_1 + a_2) + i (b_1 + b_2)$$

When you are adding in case of 2¢ X nos

$$Z_1 - Z_2 = (a_1 - a_2) + i(b_1 + b_2)$$

if
$$Z_1 = 10 + 7i$$
 and $Z_2 = 7 + 3i$

$$Z_1 - Z_2 = 3 + 4i$$

$$Z_2 - Z_1 = -3 - 4i$$

 $Z_1 - Z_2 \neq Z_2 - Z_1$: it does not obey commutativity law

The product of 2¢ X nos

$$Z_1.Z_2 = (a_1 + ib_1)(a_2 + ib_2)$$

$$= (a_1a_2 - b_1b_2) + i(a_2b_1 - a_1b_2)$$

e.g. if $Z_1 = 3 + 3i$, multiply Z_1 by its conjugate (3 + 3i)(3 - 3i)

Definition: The conjugate of the $\not\in X$ no a + ib is a - ib

When you multiply a complex no with its conjugate you get a real no

e.g.
$$(a_1^2 - a_1 i b_1 + a_2 i b_1 - i^2 b_1^2)$$

$$a_1^2 + b_1^2$$

Division of 2 ¢ X no

$$\frac{Z_1}{Z_2} = \frac{a_1 + ib_1}{a_2 + ib_2} iff \ Z_2 \neq 0$$

i.e. rationalize the denominator

$$= \left(\frac{a_1 + ib_1}{a_2 + ib_2}\right) \left(\frac{a_2 - ib_2}{a_2 - ib_2}\right)$$

$$= \frac{a_1 a_2 - i a_1 b_2 + i b_1 a_2 - i^2 b_1 b_2}{a_2^2 - i a_2 b_2 + i b_1 a_2 - i^2 b_2^2}$$

$$= \frac{a_1a_2 + b_1b_2 + i(b_1a_2 - a_1b_2)}{a_2^2 + b_2^2}$$

$$= \frac{a_1 a_2 + b_1 b_2}{a_2^2 + b_2^2} + i \left(\frac{b_1 a_2 - a_1 b_2}{a_2^2 + b_2^2} \right)$$

Or

$$= \frac{a_1 a_2 + b_1 b_2}{a_2^2 + b_2^2} - 1 \left(\frac{a_1 b_2 - b_1 a_2}{a_2^2 + b_2^2} \right)$$

* *Ex*: *Simplify the following*:

$$\frac{2+i}{1+i}, \frac{5-2i}{-1+1}, \frac{a+bi}{c+di}$$

Complex conjugate

The $\not\in X$ nos a+ib and a-ib are known as conjugate $\not\in X$ nos and their product is the real no a^2+b^2

Symbol used to denote conjugate $\not\in X$ no Z is \bar{Z} . If Z = a + ib, $\bar{Z} = a - ib$

Equality of *\(\pi X \) nos*

To prove that if $2 \not\in X$ nos a + ib and c + id are equal then a = c and b = d

$$a + ib = c + id$$

$$(a-c)+ib-id=0$$

$$(a-c) + i(b-d) = m 0$$

Or

On squaring (a line has been omitted)

$$(a-c)^2 + (d-b)^2 = 0$$

Analogy: If x and y are real and $x^2 + y^2 = 0$, then x = 0 and y = 0

Using the above, we have

$$a - c = 0$$
 and $d - b = 0$

$$\Rightarrow$$
 $a = c \text{ amd } d = b$

Hence if 2 ¢X nos are equal their real part and imaginary part are equal simultaneously.

* Ex: Express in the form a + ib where a and b are both real

1)
$$(3+2i)(7-5i)$$

2)
$$\frac{i-2}{2-3i} \frac{-2+i}{2-3i}$$

3)
$$\frac{2+i^2}{2-i}$$

4)
$$\left(\frac{1-2i}{(4-3i)^2}\right)$$

5)
$$\frac{L+2i}{i^3(1-3i)}$$

 $(Cos 150^0 + i Sin 150^0) (Cos 60^0 + i Sin 60^0)$

6) Show that =
$$\cos 210^0 + i \sin 210^0 = -\frac{\sqrt{3}}{2} - i \frac{1}{2}$$

* Solve: (1)
$$x^2 + 3x + 10 = 0$$

$$(2) x^2 + 4x + 8 = 0$$

(3)
$$x^2 \pm x + 1 = 0$$

$$(4) x^2 + 1 = 0$$

(5) Show that: (a)
$$i^7 = i$$
, (b) $i^5 = i$ (c) $i^9 + 2i = -i^{13}$

(6) Show that $x^3 - 1 = 0$ has 3 solution

Viz 1,
$$-\frac{1}{2} \pm \frac{i\sqrt{3}}{2}$$

(7) Show that the quadratic equation $x^4 - 1 = 0$

Has 4 solutions viz: \pm , i and $-i[(x^4 - 1) \equiv (x^2 - 1)(x^2 + 1)]$

(8) Show that
$$\frac{2+3i}{4+5i} = \frac{1}{41} (23+2i)$$

Square roots of negative Nos

Definition: $\sqrt{-1} = \sqrt{i^2} = i$

$$\sqrt{-9} = \sqrt{9i^2} = 3i$$

Algebra of ¢X nos

The fundamental rules of algebra used in the manipulate of real nos are

1. The commutative law of addition

$$a + b = b + a$$

2. The associative law of + (addition)

$$(a + b) + c = a + (b + c)$$

3. The associative law of multiplication

$$(ab) c = a(bc)$$

4. The distributive law of x (multiplication)

$$(a +b) c = ac + bc)$$

- * (A) Ex: (1) is addition and subtraction commute in the set of ϱX nos?
 - (2) is \pm associative in the set of $\emptyset X$ nos?
 - (3) What is the inverse of 4 + 4i?
- (B) 1. Does the operation + on $\not\in X$ have an identity element? If so, name it.
 - (2) For each element in a set of $\not\in X$ nos, is there an inverse

Let
$$Z = a + ib$$
, a , $b \in R$

Then
$$Z = 0 \Longrightarrow Z\bar{Z} = 0$$

$$\Rightarrow$$
 $a^2 + b^2 = 0$

$$=>> a = 0, b = 0$$

Then
$$Z_1 = Z = \gg Z_1 - Z = 0$$

$$=\gg (a-a_1)+i(b-b_1)=0$$

$$\Rightarrow a = a, ; b, = b$$

$$Z + Z_1 = (a + a_1) + i(b + b_1)$$

$$Z Z_1 = (a, a - b b,) + i (ab, -a, b)$$

Note:
$$i^2 = -1$$

Z can be regarded as the ordered number

-pair (a, b) ordered because $(x, y) \neq (y, x)$

i.e.
$$(3, 5) \neq (5,3)$$

or
$$a + ib \neq b + ia$$

Now a $\not\in X$ no is defined as an ordered pair of real nos and is represented by the symbol (a, b)

Rules for Operation

i.
$$(a, b) = (x, y)$$
 only $a = x$ and $b = y$

ii.
$$(a, b) + (x, y) = (a + x, b + y)$$

iii.
$$(a, b) x (x, y) = [(ax - by), (ay + bx)]$$

[x, o] is called a real gX no: x

[0,y] is called a pure imaginary $\emptyset X$ no: y

* Ex: Compute the ff: [0,1]X[0,1]

[1,0]X[0,1] and [1,0]X[1,0]

THE ARGAND DIAGRAM

Is a graphical representation of complex no e.g.: -2 - 4i

The $\not\in X$ no Z=a+ib is an ordered number –pair [a, b] and it can be represented by the pt (a, b) or (x,y) referred to given axes of coordinate

The pt Z(x,y) or (a,b) represents the $\emptyset X$ no Z, and there is a one-to-one correspondence below the $\emptyset X$ nos [Z] and the points [Z] of the Cartesian plane.

The geometrical representation of $\not\in X$ consisting of [Z] onto the plane is called the Argand diagram.

{J.R. Argand 1768-1822}

 $\not\in X$ nos are mapped in 2 directions while vectors are 3 dimentional modulus or absolute value

suppose Z = (x, y) represents the φX nos Z =. Let r be the real no given by $r = \sqrt{x^2 + y^2}$, so that r is +ve and is equal to the length OZ

The no r is called the modulus of Z and is written /Z/

$$r = \sqrt{x^2 + y^2} = /Z/$$

* Take note: The modulus of any no is a positive

e.g. The modulus of 3 + 4i = 5

and
$$3 - 4i = 5$$

Let $x \hat{O} Z$ be measured positively in the anticlockwise direction and suppose θ is the real no, modulus 2π , such that $\theta = X \hat{O} Z$

Then \hat{O} is called the argument of Z and is written arg. \hat{Z} . The value of θ is measured or determined by the two equations.

$$\cos \theta = \frac{x}{r}$$
, $\sin \theta = \frac{y}{r}$

Now,
$$Z = x + iy$$

= $r (Cos \theta + i Sin \theta)$ - Euler representation of φX nos

$$= (r, \theta)$$
 – polar form

The three forms of $\not\in X$ nos

- 1. The rectangular form Z = x + iy
- 2. The polar form $Z = r (\cos \theta + i \sin \theta) = r \operatorname{Cis} \theta$
- 3. The exponential form: $r = e^{i\theta}$

* Represents the following $\not\in X$ no on the Argand diagram and express them in polar form.

i.
$$Z_1 = 4 + 31$$

ii.
$$Z_2 = 2$$

iii.
$$Z_3 = 1 - 3i$$

iv.
$$Z_4 = -2 + 2i$$

v.
$$Z_1 + Z_2$$
, $Z_2 + Z_3 + Z_2$, $Z_1 + Z_4 - Z_3$

The polar form

Let Z = x + iy, the polar equivalent is $Z = r (\cos \theta + i \sin \theta)$

Where r is called the modulus or amplitude or the length of Z, written /Z/ or mod Z.

Where r = 1, Z lies on the unit circle in the number plane with centre at the origin.

 θ is called argument and is defined as $\theta \tan^{-1} \frac{y}{x}$

e.g.
$$Z = 4 + 3i$$

= $5 (\cos \theta + i \sin \theta)$

$$\theta = tan^{-1}\frac{3}{4}$$

$$= 36..86$$

$$Z = 5 Cis (37) approx$$

$$Arg Z = 37^0$$

The Argand diagram would be needed to determine the principal value.

If Z = 3 + 4i, then the location is such that Z is in the first quadrant

$$0 \le Arg \ Z \le \frac{\pi}{2}$$

i.e. it lies between 0 and 90^{0}

 \therefore The principal value of arg Z is 37^0

Arg
$$Z = 37^{0}$$

$$/Z/=5$$

$$Z = 5 (Cos 37^0 + i Sin 37^0)$$

$$= 5 Cis 37^0$$

General value of θ is 37 $\pm \pi r$

To get the absolute value, we sketch the Argand diagram

* Ex: Find the modulus and principal value of: (a) $Z = \frac{3+4i}{3-4i}$, hence express Z in polar form.

(2)
$$Z = 3 + 4i$$

$$(3) Z = 3 - 4i$$

Solution:

1.
$$/Z/=1,106^{0}$$

2.
$$/Z/=5$$
, 53°

3.
$$/Z/=5,324^{\circ}$$

Operations with polar form is operations of $\emptyset X$ nos in the Eulerian representation

Addition: Let $Z_1 = x_1 + iy_1$

$$= Z_2 = x_2 + iy_2$$

$$Z_1 + Z_2 = (x_1 + x_2) + i(y_1 + y_2)$$

If
$$Z_1 = r_1 Cis \theta_1$$
 and $Z_2 = r_2 Cis \theta_2$

Then
$$(Z_1 + Z_2) = r_1 \operatorname{Cis} \theta_1 + r_2 \operatorname{Cis} \theta_2$$

$$= r_1 (Cos \theta_1 + i Sin \theta_1) + r_1 (Sin \theta_1 + r_2 Sin \theta_2)$$

Subtraction:
$$Z_1 - Z_2 (x_1 - x_2) + i(y_1 - y_2) \neq (Z_2 + Z_1)$$

Also,
$$(Z_1 - Z_2) = r_1 \operatorname{Cis} \theta_1 - r_2 \operatorname{Cis} \theta_2$$

$$= (r_1 \cos \theta_1 - r_2 \cos \theta_2) + i(r_1 \sin \theta_1 - r_2 \sin \theta_2)$$

Multiplication:

$$Z_1.Z_2 = (r_1 \operatorname{Cis} \theta_1).(r_2 \operatorname{Cis} \theta_2)$$

$$= r_1 r_2 [(Cos \theta_1 + i Sin \theta_1)(Cos \theta_2 + i Sin \theta_2)]$$

=
$$r_1 r_2 [Cos(\theta_1 + \theta_2) + i Sin(\theta_1 + \theta_2)]$$

$$= r_1 r_2 \{Cis (\theta_1 + \theta_2)\}\$$

Note: Knowledge of Trig. Is referred

* Thus if we are multiplying $2 \not\in X$ nos in polar moduli and the sum of their arguments.

1. e.g. if
$$Z_1 = 2 \ Cis \ 60^0 \ and \ Z_2 = 3 \ Cis \ 45^0$$
,

Then
$$Z_1.Z_2 = (2 Cis 60^0)X (3 Cis 45^0)$$

$$= 6 Cis 105^0$$

$$=6(\cos 105^{0} + i \sin 105^{0})$$

$$=6(-\cos 75^{0} + i \sin 75^{0})$$

$$= 6 (-0.259 + i 0.966)$$

$$=-1.554+i5.796$$

2. (2 Cis
$$30^{\circ}$$
) (3 Cis 60°) = $0 + 6i$

3. (4 Cis 20°) (6 Cis 40°) =
$$12(1 + i\sqrt{3})$$

$$4. Z.Z = (r Cis \theta)^{2}$$

$$= (r Cis \theta)^{2} = Z^{2}$$

$$= (r Cis \theta) (r Cis \theta)$$

$$= r^{2}Cis (2\theta)$$

$$Z^2.Z = r^3 Cis 3\theta$$

$$Z^n = r^n Cis n\theta$$
 (Demoivre's theorem)

In particular

$$Z^n = [r(\cos\theta + i\sin\theta)]^n = r^n (\cos\theta + i\sin\theta)^n$$

$$Z^n = r^n (Cos n\theta + i Sin n\theta)$$

Thus, in raising a $\not\in X$ no Z to the power n, the absolute value, r, of the no is raised to the power n and the argument θ of Z is multiplied by n.

e.g.
$$Z = 1 + i = \sqrt{2} (\cos 45^{\circ} + \sin 45^{\circ})$$

$$Z^2 = 2 (\cos 90^0 + i \sin 90^0) = 2i$$

$$Z^3 = -2 + 2i$$

Division of $\not\in X$ nos

$$Z_1 \div Z_2 = \frac{Z_1}{Z_2}$$

Let
$$Z_1 = r_1 \operatorname{Cis} \theta_1 = r_1 (\operatorname{Cos} \theta_1 + i \operatorname{Sin} \theta_1)$$

and
$$Z_2 = r_2 \operatorname{Cis} \theta_2 = r_2 (\operatorname{Cos} \theta_2 + i \operatorname{Sin} \theta_2)$$

$$\frac{Z_1}{Z_2} = \frac{r_1 \operatorname{Cis} \theta_1}{r_2 \operatorname{Cis} \theta_2} \quad (rationalize)$$

$$= \left(\frac{r_1}{r_2}\right) \left(\frac{Cis \ \theta_1}{Cis \ \theta_2}\right) \cdot \frac{-Cis \ \theta_2}{-Cis \ \theta_2}$$

$$= \frac{r_1}{r_2} \left[\frac{(\cos \theta_1 + i \sin \theta_1)(\cos \theta_2 - i \sin \theta_2)}{(\cos \theta_2 + i \sin \theta_2)(\cos \theta_2 - i \sin \theta_2)} \right]$$

$$= \frac{r_1}{r_2} Cis (\theta_1 - \theta_2)$$

$$\frac{r_1}{r_2} \left[\frac{\cos\theta_1 \cos\theta_2 + \sin\theta_1 \sin\theta_2 - i(\cos\theta_1 \sin\theta_2 - \cos\theta_2 \sin\theta_1)}{\cos^2\theta_2 + \sin^2\theta_2} \right]$$

$$\frac{r_1}{r_2} \left[\frac{\cos \theta_1 \cos \theta_2 + \sin \theta_1 \sin \theta_2 - i(\sin \theta_1 \cos \theta_2 - \cos \theta_1 \sin \theta_2)}{\cos^2 \theta_2 + \sin^2 \theta_2} \right]$$

$$=\frac{r_1}{r_2}\left[Cos(\theta_1-\theta_2)-iSin(\theta_1-\theta_2)\right]$$

$$=\frac{r_1}{r_2}\left[Cis\left(\theta_1-\theta_2\right)\right]$$

Example:
$$\frac{5Cis(\frac{\pi}{4})}{3Cis(\frac{\pi}{6})} = \gg \frac{5Cis(\frac{\pi}{4})}{3Cis(\frac{\pi}{6})} = \frac{5}{3}Cis(\frac{\pi}{4} - \frac{\pi}{6}) = \frac{5}{3}Cis(\frac{\pi}{4})$$

$$= \frac{5}{3} Cis \ 15^{0} = \frac{5}{3} (Cos \ 15^{0} + i Sin \ 15^{0})$$

Thus in dividing a $\not\in X$ no Z_1 by a $\not\in X$ no Z_2 the absolute value r_1 of Z_1 is divided by absolute value r_2 of Z_2 and the argument θ_2 is subtracted from the argument θ_1 of Z_1

* (A) if
$$Z_1 = r_1 (Cos \theta_1 + i Sin \theta_1)$$

And
$$Z_2 = r_2 (Cos \theta_2 + i Sin \theta_2)$$

Find: (i)
$$Z_1.Z_2$$
 (2) $Z_1.Z_2$ (3) $Z_2.Z_1$ (4) $\frac{Z_1}{Z_1.Z_2}$ (5) $\frac{Z_2.Z_2}{Z_1}$ (6) $\frac{Z_2}{Z_1}$

(B) If
$$Z_1 = \frac{3}{4} Cis \ 25^0$$
 and $Z_2 = \frac{5}{6} Cis \ 125^0$

Find: (1)
$$Z_1.Z_2$$
 (2) Z_1^2 (3) $\frac{Z_1}{Z_2}$ (4) $\frac{Z_1Z_2}{Z_2Z_1}$

DE MOVRE'S THEOREM

 \forall (For all) rational values of n

$$[(\cos\theta + i\sin\theta)]^n = r^n (\cos n\theta + i\sin n\theta)$$

i.e.
$$(r \operatorname{Cis} \theta)^n = r^n \operatorname{Cis} (n\theta)$$

Proof (Case 1)

When n is a +ve integer using the product of $2 \not\in X$ nos we have

$$(r_1 Cis \theta_1) (r_2 Cis \theta_2) = r_1 r_2 Cis (\theta_1 + \theta_2)$$

Also,

$$r_1 r_2$$
 Cis $(\theta_1 + \theta_2)$ $(r_3 \text{ Cis } \theta_3)$ $r_1 r_2$ $r_3 \text{ Cis } \theta_1 + \theta_2 + \theta_3)$

Proceeding in the same way, we have

Case II

When n is negative no let n = -m, where m is a +ve integer

$$r^{n} (Cis \theta)^{n} = (r Cis \theta)^{-m}$$

$$= \frac{1}{(r Cis \theta)^{m}}$$

$$= \frac{1}{r^{m} Cis (m\theta)}$$

$$\frac{1}{r^{m} Cis (m\theta)} \frac{-(Cis m\theta)}{-(Cis m\theta)}$$

$$\frac{1}{r^m Cis \, m\theta} \cdot \frac{(Cis - m\theta)}{(Cis - m\theta)}$$

$$\frac{1}{r^m(\cos m\theta + i \sin m\theta)}. \left(\frac{\cos m\theta - i \sin m\theta}{\cos m\theta - i \sin m\theta}\right)$$

$$= \frac{\cos m\theta - i \sin m\theta}{r^m(\cos^2 m\theta + \sin^2 m\theta)}$$

$$=\frac{\cos m\theta - i \sin m\theta}{r^m(1)}$$

$$=\frac{1}{r^m}\left(\cos m\theta - i\sin m\theta\right)$$

$$r^n$$
 (Cos $m\theta - i Sin m\theta$)

$$r^n$$
 ($Cos n\theta + i Sin n\theta$)

Case III

When n is \pm fraction

Let $n = \left(\frac{p}{q}\right)$, where q is a \pm ve integer

$$\frac{\left[r\left(\cos\left(\frac{Q}{q}\right) + i\sin\left(\frac{Q}{q}\right)\right]^p = r^D(\cos\left(\frac{PQ}{q}\right) + i\sin\left(\frac{PQ}{q}\right)}{\left[r\left(\cos\frac{Q}{q}\right) + i\sin\left(\frac{Q}{q}\right)\right]^q = r^q\left(\cos\theta + i\sin\theta\right)}$$

 $\cos \theta + i \sin \theta$

iff
$$r = 1$$

But

$$\left(Cis\frac{Q}{q}\right) = \left(Cis\theta\right)^{\frac{1}{q}} = \gg Cos\left(\frac{Q}{q}\right) + i Sin\left(\frac{Q}{q}\right)$$

Raise to power P

$$(Cis\ \theta)^{\frac{p}{q}}\left[Cos\left(\frac{Q}{q}\right) + i\ Sin\left(\frac{Q}{q}\right)\right]^{p}$$

$$= Cis\left(\frac{PQ}{q}\right)$$

Substituting for n, we have

$$(Cis \ \theta)^n = Cis \ (n\theta), where \ n = \frac{p}{q}$$

 \therefore from the above three cases

$$(Cis\ Q)^n = Cis\ (nQ)$$

∀ integral values of n

Assignment

1(a) Express
$$\frac{(2-i)(3+i)}{(1+2i)(2-3i)}$$
 in the form $(A+iB)$

Where A and B are real numbers

(b) Describe the loc i represented by the equation:

(i)
$$/Z/-1/=2$$

$$(ii)/Z + 1/=/Z - 1/$$

where Z

= x + iy is a point in the Argand diagram derive the cartesian equation of the loc i

(c) If
$$Z = \cos \theta + i \sin \theta$$
, show that

$$Z^n + \frac{1}{Z^n} = 2 \cos n\theta$$

By expanding $(Z + \frac{1}{Z^n})^4$ show that $16 \cos^4 \theta = 2 \cos 4\theta + 8 \cos 2\theta + 6$

(d)Use the relation to evaluate
$$\int_0^{rac{11}{4}} \cos^4 \theta \; d heta$$

Assignment

* Use the principle of mathematical induction to proof DeMoivores theorem

Application of DeMoivres

I. It can be used to find $Cos\ n\theta$ and $Sin\ n\theta$ in terms of $Cos\ \theta$ and $Sin\theta$ only if n be a +ve integer.

Let
$$Z = Cis \theta$$

II.